cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
BERKALA FISIKA
Published by Universitas Diponegoro
ISSN : -     EISSN : -     DOI : -
Core Subject : Science,
BERKALA FISIKA adalah jurnal saintifik yang diterbitkan secara periodik 3 bulanan. Jurnal ini memuat kajian-kajian Fisika baik kajian teoretik maupun hasil eksperimen. Jurnal ini juga memberi ruang yang luas bagi kajian – kajian aplikasi fisika dalam bidang teknologi, ilmu-ilmu hayati dan kedokteran.
Arjuna Subject : -
Articles 5 Documents
Search results for , issue "Vol 14, No 3 (2011): Berkala Fisika" : 5 Documents clear
EVALUASI PERUBAHAN STRUKTUR AKIBAT SUBSTITUSI PARSIAL ION Mn +2 DAN ION Ti PADA M HEKSAFERIT BaFe 12-2X Mn MENGGUNAKAN ANALISIS RIETVELD Widiyanto, Widiyanto; Priyono, Priyono; Nurhasanah, Iis
BERKALA FISIKA Vol 14, No 3 (2011): Berkala Fisika
Publisher : BERKALA FISIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (246.222 KB)

Abstract

Cationic interaction of Mn+2and Ti +4substitution on conventional hexaferriteBaFe O have been studied using X-ray diffraction (XRD) and  analysis by the Rietveld method. These Research was conducted by combining compound of Fe O12 19 TiO2 to form  (Fe,MnTi)2O  phase3BaCO3 phase and heated at 1200. Then, Compound of (Fe,MnTi)0 C to form of BaFe12-2xresult of rietveld analysisshowed that the composition of Hexaferrite BaFe22 3, MnCO  and3O  phase mixed withMn Ti O3x x 19 compounds. The  as main phase and Fe2Oas a second phase. At all compositions showed that the largerfraction of ions Mn+23  and Ti+4 ions able to change latice parameter from  the volume unitcell of conventional hexaferrite. The results reatveld iteration of the phaseBaFe MnTiO (x = 1.0) obtained values of lattice parameters a = 5.9116 Ǻ and c =23.2532 Ǻ or shrinkage abaut 5,0 % volume unit cell and at  BaFe Mn Ti O10 19 (x=2.5)the volume unit cell 7,0% lower  than conventional hexaferrite.Keywords: Rietveld, unit cell, substitusi io,  hexaferrite, 12-2x7 2.5 2.5 19Mn Ti Ox x 19
INVERSI IMPEDANSI ELASTIK UNTUK MENGESTIMASI KANDUNGAN RESERVOIR BATUPASIR LAPANGAN “Ve” FORMASI CIBULAKAN CEKUNGAN JAWA BARAT UTARA Aisyah, Veratania; Harmoko, Udi; Mualimin, Mualimin
BERKALA FISIKA Vol 14, No 3 (2011): Berkala Fisika
Publisher : BERKALA FISIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (488.599 KB)

Abstract

An Elastic Impedance inversion was carried out  to determine sandstone reservoir characterization of “Ve” Field Cibulakan Formation, Northwest Java Basin. There are many steps of data processing to analize a well log data in order to get sensitive angle of lithologic characterization. Mudrock Line equation was applied to obtain Vs log data of the research target zone. The next step, we did Well seismic tie toobtain horizon that approach the real geological zone. Initial model was made by used a control well andDST 5 horizon. Sparse Spike inversion gives the most accurate result than two other one. According to thevolume inversion, we plotted to a map show the contrast of sandstone lithology. Based on Elastic Impedanceinversion analysis, we estimate the rangeof sandstone reservoir impedance:1348 (m/s)gr/cc – 1365(m/s)2gr/cc. Crossplot analysis result between log Elastic Impedance and log Gamma Ray shows that 35isthe best angle of the sandstone and shale lithologic sparation.Keyword: Elastic Impedance, AVO, inversion, Mudrock Lin
INVERSI LINIER LEASTSQUARE DENGAN MATLAB ( Studi Kasus Model Gravitasi Bola Berlapis) Nurwidyanto, Irham; Setiawan, Ari
BERKALA FISIKA Vol 14, No 3 (2011): Berkala Fisika
Publisher : BERKALA FISIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (289.088 KB)

Abstract

The linear  least square Inversion have been made with matlab8 for a case study of layered ball with the aim to study the response of the gravitational field of a layered ball.The gravitational field of layered ball formulation described later the value  is calculated by programming in matlab. As the validation data is computed on the surface of the earth'sgravitational field with a case of six layers with different density and radius. The value aresuitable  to the real slate. After the results are appropriate, the results of  programming was made is used to calculate the gravitation field  of another layered ball object, the data is then used assynthetic data (considered as a data field) which is an inversion of input data on the program aremade.The results obtained in this modeling can be concluded that there are ambiguity from theinversion results, which means that the parameters which be obtained from the invertion methodare  very different to the riil parameter if not given early predictive value as the limit of theexpected value. By providing a limit value (the value of the initial estimate) the expected results ofthe inverse can provide results that correspond (nearly) true value.Key words: Inversion, Linier leastquare, layered ball
PEMBUATAN SOFTWARE MONITORING JUMLAH PRODUKSI KERUPUK MENGGUNAKAN BORLAND DELPHI 7.0 Adiyani C, Mirsari; Danusaputro, Hernowo
BERKALA FISIKA Vol 14, No 3 (2011): Berkala Fisika
Publisher : BERKALA FISIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (208.154 KB)

Abstract

The monitoring program for the crackers counter has been done by Borland Delphi 7.0. The results of this program is intended to help the manager’s job in monitorin the amount ofcracker produced by industry. This program using Borland Delphi 7.0. While to find out the cracker pieces which fellfrom the conveyor using photodiodes sencors and lasers as light sources directed at the sensorphotodiodes. When the sencor detected a cracker pieces which fell from the conveyor, the sensorsend a signal to the microcontroller for processing and then send to computer via serialcommunication. On computer, that data is received by Borland Delphi 7.0 program to displayedand stored in Microsoft Access. The system has been realized successfully and can printer the data stored in databases sothat the amountof crackers produced will be known.Keyword: Crackers, Borland Delphi 7.0, Microsoft Access, photodiodes sencors, lasers
MASSA KLASIK SOLITON PERSAMAAN SCHRÖDINGER NONLINEAR Prayitno, T. B.
BERKALA FISIKA Vol 14, No 3 (2011): Berkala Fisika
Publisher : BERKALA FISIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (64.355 KB)

Abstract

We have calculated classical mass of soliton of nonlinear Schrödinger equation in thecase of (1+1) space-time dimension. The equation describes the propagation of electromagneticwave in combination of dispersive-nonlinear medium. The propagation itself will create a stableelectromagnetic pulse. The first thing that must be done is to calculate analytical solution of onesoliton of nonlinear Schrödinger equation by transforming wave function and continuing byapplying direct integration. The definition of its classical mass is based on classical field theory bybeginning the construction of Lagrangian density and continuing Hamiltonian density of thatnonlinear equation. The Lagrangian density is obtained by trial function relating by Euler Lagrange that creates appropriate nonlinear Schrödinger equation.Keywords:Soliton,Nonlinear Schrödinger.

Page 1 of 1 | Total Record : 5


Filter by Year

2011 2011


Filter By Issues
All Issue Vol 26, No 1 (2023): Berkala Fisika Vol 25, No 4 (2022): Berkala Fisika Vol 25, No 2 (2022): Berkala Fisika Vol 24, No 4 (2021): Berkala Fisika Vol 24, No 3 (2021): Berkala Fisika Vol 24, No 1 (2021): Berkala Fisika Vol 23, No 4 (2020): Berkala Fisika Vol 23, No 3 (2020): Berkala Fisika Vol 23, No 2 (2020): Berkala Fisika Vol 23, No 1 (2020): Berkala Fisika Vol 22, No 4 (2019): Berkala Fisika Vol. 22 No. 4 Tahun 2019 Vol 22, No 3 (2019): Berkala Fisika Vol. 22 No. 3 Tahun 2019 Vol 22, No 2 (2019): Berkala Fisika Vol. 22 No. 2 Tahun 2019 Vol 22, No 1 (2019): Berkala Fisika Vol. 22 No. 1 Tahun 2019 2015: Berkala Fisika Vol. 18 No. 4 Tahun 2015 2015: Berkala Fisika Vol. 18 No. 3 Tahun 2015 2015: Berkala Fisika Vol. 18 No. 2 Tahun 2015 2015: Berkala Fisika Vol. 18 No. 1 Tahun 2015 2014: Berkala Fisika Vol. 17 No. 4 Tahun 2014 2014: Berkala Fisika Vol. 17 No. 3 Tahun 2014 2014: Berkala Fisika Vol. 17 No. 2 Tahun 2014 2014: Berkala Fisika Vol. 17 No. 1 Tahun 2014 Vol 16, No 4 (2013): Berkala Fisika Vol 16, No 3 (2013): Berkala Fisika Vol 16, No 2 (2013): Berkala Fisika Vol 16, No 1 (2013): Berkala Fisika Vol 15, No 4 (2012): Berkala Fisika Vol 15, No 3 (2012): Berkala Fisika Vol 15, No 2 (2012): Berkala Fisika Vol 15, No 1 (2012): Berkala Fisika Vol 11, No 2 (2008): Berkala Fisika Vol 14, No 4 (2011): Berkala Fisika Vol 14, No 3 (2011): Berkala Fisika Vol 14, No 2 (2011): Berkala Fisika Vol 14, No 1 (2011): Berkala Fisika Vol 13, No 4 (2010): Berkala Fisika Vol 13, No 3 (2010): Berkala Fisika Vol 13, No 2 (2010): Berkala Fisika Vol 13, No 2 (2010): Berkala Fisika, Edisi Khusus Vol 13, No 1 (2010): Berkala Fisika Vol 12, No 4 (2009): Berkala Fisika Vol 12, No 3 (2009): Berkala Fisika Vol 12, No 2 (2009): Berkala Fisika Vol 12, No 1 (2009): Berkala Fisika Vol 11, No 4 (2008): Berkala Fisika Vol 11, No 3 (2008): Berkala Fisika Vol 11, No 1 (2008): Berkala Fisika Vol 10, No 4 (2007): Berkala Fisika Vol 10, No 3 (2007): Berkala Fisika Vol 10, No 2 (2007): Berkala Fisika Vol 10, No 1 (2007): Berkala Fisika Vol 9, No 4 (2006): Berkala Fisika Vol 9, No 3 (2006): Berkala Fisika Vol 9, No 2 (2006): Berkala Fisika Vol 9, No 1 (2006): Berkala Fisika More Issue